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Abstract. The structure factor S(q) and the direct correlation function F@') of 
rare gases are expected to have a non-analytic 1qI3 terni at small q .  This tenn is 
due, in addition to the well known long-range rW6 tail of the two-body iiiteraction, 
also to the tluee-body Axilrod-Teller (AT) interaction. Tlie coefficient Z3 of the 1qI3 
temi of F(q) has a particularly simple state dependence, 7'-' in temperature and 
linear in density, when the AT interaction is present. If no three-body interaction 
is present Z3 is density independent. Therefore the experinieiital detenniiiation of 
tlie density dependence of Z3 will give unequivocable evidence of three-body forces. 
On the basis of the integral equation method we determine that it will be easier 
to detect the 1qI3 terni if the scattering data are analysed in tenn of F(9) and for 
measurements at density and temperature not far froiii the critical point. Under 
these favourable conditions scattering ineasurenients in the range 1-4 n i ~ i - ~  will give 
a precise detenninatioii of tlie 1qI3 terni. Tlie role of retardation, which chaiiges the 
t-6 tail into r-', on the small-q behaviour of S(q) and F(q) is also evaluated and 
this effect is predicted to be iiieasurable for ~ 7 0 . 5  nni-'. 

1. Introduction 

The static structure factor S(q)  of a fluid is a quantity of fundamental interest because 
it gives information on the spontaneous density fluctuations and on the local order 
which is present in the system. In addition in the case of a monoatomic fluid S(q) 
in principle uniquely determines the interatomic interaction p ( ~ )  if this interaction 
is pairwise additive (for a review see [l]). If many-body forces are also present then 
S(q) determines an effective pair interaction. If this scheme to deduce p(r) from 
S(q) is simple, in principle, it is well known that tlie inversion of S ( q )  is, in practice, 
very demanding both experimentally and theoretically because of the high sensitivity 
[2] of the extracted interaction to the accuracy and q-range of the data and to the 
approximations of the theory which are used in the inversion of S ( q ) .  

In the case of rare gases there is one feature of p(r) which, in principle, can be 
extracted from S ( q )  without any ambiguity-its long-range r-6 tail. As a result of this 
long-range tail due to dispersion forces, S(q) is non-analytic at  q = 0 and its small-q 
expansion displays a 1qI3 term with a coefficient simply related to the amplitude of 
the r-6 tail [3]. Here the only problem is how small q has to he in order for the 1qI3 
term to be unravelled from the other terms. We are not aware that any measurement 
of S(q)  has detected this 1qI3 term yet. 
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A number of articles 14-61 have been specifically devoted to the question of the 
small-q behaviour of S(q) after the pioneering work by Enderby et d [ 3 ]  and we address 
this problem again for several reasons. First we have now available from the theory 
of fluids, schemes based on the integral equation for the radial distribution funct.ion 
g(r) which are very accurate [7, 81 over most of the phase diagram and describe 
both the short- and long-range behaviour of g(r) starting from realistic models of the 
interatomic interaction. Previous studies 14, 51 were based on schemes which were 
only accurate in the very dense regime, which were spec,ific to small-q or have been 
limited [GI to the Lennard-Jones potential (LJ). On the basis of previous studies one 
cannot completely answer the questions we have iii mind: in which q should range 
experimentalists expect l o  find the 1qI3 term and wliicli region of the phase diagram 
is most favourable for its detection. The second reason is that we find that the triple 
dipole Axilrod-Teller (AT) interaction also contributes to the lqI3 term. Fortunately 
we have already extended [7] the integral equation we use, a modified hypernetted 
chain (MHNC) equation [Q], to the case when a three-body interaction is present so 
that we can analyse this question. Finally the v6 tail of the interaf.oniic interaction 
does not extend to arbitrarily large distances and retardation due to the finite velocity 
of light modifies the asymptotic behaviour of Ip(r) giving a r-? tail. Therefore the 1qI3 
term does not extend to arbitrary small-q but this question has not been examined in 
the literature. Here we also study how retardation modifies the small-q behaviour of 
S(q )  and F(q) and the thermodynamic properties. 

The contents of the article are as follows. In section 2 we discuss the integral e q u s  
Lion we are using in the case of pair forces and pair plus triplet forces. In section 3 we 
consider the small-q behaviour of S ( q )  and of the Ornstein-Zernike direct correlation 
function Z(q) given by our equation. Then we present tlie result of a numerical solu- 
tion to the equation for an interatomic interaction appropriate to argon; we display 
the q region where the 1qI3 term sliould be detectable botkfor S(y) and F(q) and we 
discuss the range of density and temperature more favourable for tlie detection of the 
1qI3 term. In section 4 we discuss the effects of retardation on tlie properties of the 
fluid. A discussion of our results is giveri in section 5. 

2. The iiitegral equation scheme 

We assume that the interatomic interaction c0nsist.s of a central pair pot,ent,ial plus a 
threcbody potential, 

(1) p , .  =I*.. - l i ( r , , . . . , T N ) = C ( C ( r i i ) t  4 3 ) ( r i , ~ j , ~ , : ) ,  Lf J Ti l  
i < j  i < j < k  

and that quantum effects can be neglected. The first equation we use is  the modified 
hypernetted chain (MHNC) equation extended CO include three-l)ody forces 171. This 
reads 

s(r) = e x p [ - P d ~ )  + @(r) + C(T) + EHs(r; 41 
@(r) = g(r) - 1 - c(r) = h ( r )  - e ( . )  

(2) 

(3) 
where the direct correlation function c(r) is related to g(r)~= 1 +h(r) by the Ornstein- 
Zernike (02) relation 

h(r) = c(r) + p/d3r'c(r')h(lr - ~ ' 1 )  (4) 
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and C(r) is the dressed three-particle vertex 

If in (2) E,, were the exact bridge function of the system including diagrams with 
three-body plaquettes, equation (2) would be exact. The approximation resides in 
replacing this unknown bridge function with that of hard spheres of diameter d in 
which the optimal choice of d is determined by the equation 

If only two-body forces are present one has simply to drop the term C(r) in equa- 
tion (2). 

We also consider a related equation [IO], a cross-over hypernetted chain equation 
(CRS-MHNC), which differs from equation (2) in the substitution of the hard sphere 
bridge function E,, for the cross-over form 

ECRS(r) = {I  -I(r)}EHs(r;d)+l(r)[I -g(r)+Ing(r)] .  (7) 

The term in square braket represents the functional form corresponding to the mean 
spherical approximation (MSA), i.e. it is such that c(r) = -fly(.) where f ( r )  = 1. The 
crossover function f(r) vanishes in the core region and is unity at  large distances so 
that EcRs(r) has the hard sphere form at short distance and the MSA form a t  large 
distance. We refer the reader to [7] for the form of I (r)  and for the criterion which 
determines the cross-over parameters. 

The accuracy of the MHNC and CRS-MHNC equation is well documented by a num- 
ber of comparisons with simulation results for different forms of the pair interaction 
p(r) and in various regions of the phase diagram. The effects of the three-body AT 
interaction is also accurately represented 18, 111. The results of the two equations 
are very similar, if we exclude the immediate neighbourhood of the critical point., the 
CRS-MHNC being slightly superior. 

We consider now the long-range behaviour of c ( r )  and h ( v )  aiitl the small-q be- 
haviour of the related functions 

z(q) = / d 3 r ~ c ( r )  (8) 

S(q) = 1 + p I d 3 r e i T r t q ( r )  - I] (9) 

when the pair interaction has the tail 

p(r) - -B/r6 as r - M. (10) 

If S(0) = pkBTKT is finite, i.e. the system is not at the critical point, a general result 
by Groeneveld and Stell [I21 states that c(r) - -pp(r) asymptotically as r -+ M. 

This behaviour is also given by the MHNC equation as can be shown by taking the 
logarithm of equation (2) and expanding Ing = In( l+  h )  = h - ;/I' + ' .  .. When no 
three-body forces are present we get 

c(r) - -Bp(r) t A,hz(r) t EHS(T) t ' ' as r - 00 (11) 
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with A, = f. EHs(r) decays to zero at large distance more rapidly than a power law 
and from the 02 relationship i t  follows that h(r)  and c(r) decay to zero with the same 
power law. Thus the result c(r) - -&(r) follows. In the case of the CRS-MHNC we 
have the stronger result c(r) = -PI.(.) in the range where I(r) = 1. We conclude 
that for both equations the dominant long-range behaviour of c(r) is correct. The 
subdominant term is not correct, having A, = for MHNC and A, = 0 for CRS-MHNC, 
whereas the exact A, is a state-dependent coefficient related to the thermodynamic 
properties [12]. 

The situation is slightly different when a three-body interaction is present because 
the dressed three-particle vertex C[r)  has a long-range tail when c $ ( ~ )  h a s  the AT form: 

L Realto and M Tau 

where Oi are the angles of the triangle with vertices at T i ,  i = 1, 2, 3. Casanova et 
al [I31 discussed the three-particle vertex ( 5 )  i n  the limit of low density where g ( r )  
becomes equal to the Boltzmann factor exp[-@y(r)]. They considered three different 
pair potentials (hard sphere, square well and Lennartl-Jones) for which they obtained 
the same asymptotic behaviour 

and argued that such a result is valid in general for any two-body potential. We would 
expect that  this conclusion would also be valid a t  arbitrary density if the asymptotic 
contribution to C(r = (r2 - rII) derives from a region of integration over r3 in equa- 
tion (5) where T~ is far from rl and r2 so that the g in the integrand can be approx- 
imated by unity. We have proved this statement analytically and result (13) under 
the only condition that h(r) vanishes at least as fast as r-* with (r > 0 as r - 03. 

Therefore result (13) also holds true at  the critical point. We arrived at this result by 
extending the integration in equation (5) over rz  and introducing the delta function 
6(rZ3 - rI3 + T ~ , )  as a factor in the integrand. At this point the integrals can be 
written in Fourier space so that one can apply Fourier asymptotic 1141 analysis and 
after some manipulations we arrive a t  (13). I t  is clear from (2) that. -C(r)/@ has the 
role of an effective two-body interaction w11ic.h h a s  to be added to y(v) so that 

(14) 
From the diagrammatic representation of the bridge function it is found that the 
diagrams with three-body plaquettes decay to zeto faster thaii C(v) so that (14) has 
general validity and is not limited to the MHNC equation we are using. 

By using asymptotic Fourier analysis [I41 it is a simple matter 131 to obtain from 
(14) the small-q expansion of T(q)  and S ( q )  witli the result 

c(r) - -By(r) + C(r) = B(B - (8n /3 )pu) / r6  as r 4 03. 

(15) 
I 

c ( q )  = q o )  + FZq2 + z3iq13 + ~4 + . . . 

The 1413 terms are due to the r-' tail in direct space and the coefficients read 
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c3 has a very simple state dependence, it is inversely proportional to temperature 
and is a linear function of density due to the AT interaction. For a pure twc-body 
interaction Z3 is density independent. Contributions to the three-body interaction of 
higher order of the triple dipole one do not contribute to F3 so that the result (17) 
is exact for fluids of apolar molecules. Quadruple dipolar interaction gives rise to a 
four body interaction which contributes to Z3 with a term proportional to pz but this 
contribution should remain small even a t  the highest densities. The state dependence 
of the coefficient S3 is much more complex due to the presence of the square of the 
dimensional isothermal compressibility S(0) as shown in (18). 

The q-range most appropriate for detection of the 1qI3 terms depends on the value 
of the coefficients of the higher order terms for which no analytic expression is known. 
We have determined this q-range from the numerical solution of the integral equations 
as discussed in the next section. 

- 

3. Small-q behaviour of S(q) and the [qI3 term for  argon and for other rare 
gases 

We start with the study of argon. For the pair interac.tion we take the HFD-62 form of 
Aziz el a l  [15] and as the amplitude of the AT interaction the value v = 73.39 x 
erg cm-’ 1161. We solve the MHNC and the CRS-MHNC equatioii with a standard 
iterative method and we take a very large cut-off in r si1ac.e in order to reproduce the 
long-range tail and the 1ql3 terms. We use a st,ep size Ar = 0.025 with 214 points so 
that R,,, = 410 in units of the position r, of the minimumof p(v), r,,, = 0.37565 nm 
for the HFD-BZ potential. With the AT interartion 4(3) it is appropriak to expand the 
Boltzmann factor in C, equation ( 5 ) ,  to linear order in @4(3) and we rewrite it in the 
form 

c( r iz )  = -PP 1 d3r3 [!?(r13)g(rZ3) - E(r13 - “c)E(“z3 - r ~ ) I d ( ~ ) h  rr2> 7’3) 

- P P /  d3r3 [w,, - r , ) ~ ( r 2 3  - 7 ~ c ) ~ 4 ( ~ ) ( ~ 1 , r 2 ,  T3) (19) 

where E ( z )  is the step function, E(I) = I for I < 0, E ( z )  = Q for I > 0. The second 
integral can be computed analytically and the first is computed numerically with a 
cut-off on the integration on y3 such that r13, v23 < rc with rc = 5 Y,. This amounts 
to neglecting the small difference of g(r) from unity when r > rc and the value of rC 
is such that this approximation has a completely negligible effect on C ( r ) .  

In order to extract the coefficients F3 and S3 from the numerical result we construct 
the quantities 

so that from the slope at the origin me get Z3 and ,5\ and the intercept a t  q = 0 
gives, respectively, Fz and S,. In figure 1 we have shown E3 as function of density for 
the T = 180 K isotherm wit,h and without 4(3) together w i t h  the analytical result. 
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The numerical result agrees with the exact result to better than I %  and this is quite 
adequate for our purpose. For the HFD-B2 potential for argon plus the AT interaction 
the coefficient Z3 has the value 

L Realto ond M Tau 

Z$ = [0.3667 - 0.003663 p]/T (nm6) (22)  

where p is in nm-3 and T in Kelvin so that with respect to low density the value of 
Z3 is reduced by about 20% a t  the density of the triple point due to the three-body 
AT interaction. The Barker et al 1171 pair potential gives essentially the same value of 
Z3, i.e. r3(p = 0) = 0.3673/T (nm6), and the HFD-C [I81 pair potential gives a slightly 
smaller value F8(p = 0) = 0.3627/T (nm6). 

0.0020 

Figure 1. Coefficient G of the cubic term of E(q) as function of density from the 
MHNC equalion for argon at T = 180 li for the HFO-Bz potential w i t h  ( x )  and 
without (0) l h e  AT tluec-body iuteractiou. h i l l  lines represent the analyticd result 
(22) wi th  arid witlioul the AT iuluaction. 

As an example of the overall behaviour of X(q) in figure 2 we show X(q) as function 
of q at T = 140 K and at p = 1.9 nmV3 computed with the MHNC equation with and 
without $(3). I t  is dear from the figure that over an extended range of q of order of 
4 nm-' h(q)  is an essentially linear function of q so that i t  should be possible to extract 
Z3 from the experimental S(q), converted to F ( q ) ,  if this is measured in the range of 
order 1-4 nm-'. This is quite a n  accessible range with available instrumentation. 
It is interesting to contrast this behavionr of X ( q )  with  the one c.orresponding to a 
shortrange potential. To this end we have used an empirical pair interaction ye,,,(.) 
which has been extracted from the measured S(9) a t  low density by Fredrikze el al 
[Ig]. 'pem(r) has an attractive well similar to that  of the HFD-BZ form but beyond a 
distance of order of 10 A p,,,,(r) has weak oscillations around zero and not a v6 tail. 
This is probably due to some cut-off problem with the experimental data but it gives 
us a pair interaction of finite range. In fact we truncate 'p (t) and displace it to zero 
at the position of the first maximum which is at r IO AmThe resulting X(9) is also 
shown in figure 2 and the completely different behaviour is clear at sniall-9. 

The g-range where X ( q )  has an essentially linear behaviour with q depends on T 
and p. In order to display the large quantity of information in compact form we define 
qj% as the value of q where the percentage deviation of X(q) from the straight line 
e ,  + E31qi is 3%. We take this to be a measure of the q-range whcre from our theory - 
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Figure 2. A ( q )  = mq) -F(O)]/q* BS fruiclionof q for argon at T = 140 I< and p = 1.9 
mu" for the HFD-BZ potential with (full curve) slid williout (brokencurve) the AT 
inleraclion and for aill empirical (see text) short range pair ialeraclion (diain curve). 

the F3 term is 'visible' in Z(g) or, more precisely, in A(y). q& is shown in figure 3 as 
function of density for the two isotherms T = 180 and 140 K wlieri the MHNC equation 
is used with and without &?). The results from the CRS-MHNC equation, which we 
do not show, are similar and in general it turns out that  q& is larger by IO-20% than 
the MHNC result. 

T - L I O K  

2 

0 

'I{, , , , , , , , , , x ,  p , ,  , , , 
0 6 IO 15 20 

P b - 7  
Figure 3. Range q& of liuearity of X ( q )  for tlic isolheruw T = 180 m d  140 I< of 
argon for lhe HFD-BZ potential with ( x )  and witliout (0) the AT ioleraelion. 

The general comment we can make is that q& is larger for an intermediate value of 
the density, roughly in tlie region of the critical density if T > T, or oti the coexistence 
line if T < 'Ic, and it becomes small, typically below 1 nm-', at  the density of the 
triple point. q& becomes larger for decreasing temperature but a t  the same time 
the liquid-vapour coexistence region becomes wider and the detection of I3 is more 
difficult. For instance at  the triple point q& = 0.4 nm-'. The presence of the three- 
body interaction slightly modifies the shape of X(q) but in general does not alter the 
region of linearity very much. A large effect on q& is present if the system is close to 
the critical point or to the spinodal line where S(0) becomes larger than unity. For 
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instance at T = 180 K and p = 6 nme3 (T/Tc = 1.19,p/pc = 0.74) qj, drops from 
3.0 to 1.8 nm-' when 4(3) is introduced, We believe that this is ai, indirect effect due 
to the displacement of the critical temperature In fact the critical temperature T, 
changes [l l]  by about 10% due to the presence of $(3) and T, is substantially larger 
than experiment if only the two-body interaction is considered. On the other hand 
empirically we find that there is a relationship between the value of q& and that of 
S(0)-a large value of S(0) is connected to a large value of q&, 

Different behaviour is found with S(q) or, more precisely, with p ( q )  given in equa- 
tion (21). If we define q& for p ( q )  in a similar way to q& we find that q& never 
exceeds 1 nm-' and it is smaller at intermediate densities. If q& for p ( q )  is slightly 
larger than q& for X(q) at the density of the triple point, at  intermediate density 
it is an order of magnitude smaller (see figure 4). We can understand this different 
behaviour as follows. If the relevant q is so small that we can neglect the higher 
order terms not written in (20) and (21) we easily obtain qj, = 0.03 F3/lF4i and 
q& = 0.03 Z3/lF4 +pS(O)GI. Hence a large value of S(0) leads to a small value of q& 
since F2 is a smooth function of T and p (see table 1).  Only at  tlir lowest temperature 
in the liquid phase, i.e. at  the triple point, is q& substantially larger than q;, but its 
value, q& = 0.8 om-', is still small so it will not be easy to detect. 

L Realto and M Tau 

0.5 . . . . . . . . . . . . . . . . . . . . . .  
D -- T = 180 K x 

0 4  

Figure 4. Range q& of linearity of p ( q ) .  Symbols have same meaning as i n  fiyre 3. 

For all the thermodynamic states we have considered the structure factor 11% an 
02 behaviour a t  small-q, i.e. S ( 9 )  has a downward curvature around 9 = 0 so that S(9) 
has  a minimum a t  a finite g. This minimum is very prominent at  intermediate densities 
and very weak at  the highest densities, The position and value at  this minimum are 
given in the table at  selected densities a t  a temperature above T,, a t  one below and 
at the triple point. We also give the value of S(O), T(0) and F2. The value of S, (see 
equation (16)) can be easily obtained from the relationship S, = p[S(0)]2F2.  There 
is a substantial agreement of the computed S(0) with the experimeutal value (last 
column) deduced from the isothermal compressibility, the typical deviation being of 
the order of 5%. The percentage deviation becomes somewhat larger for states in the 
neighbourhood of the critical point as might be expected close to states where S(0) is 
diverging. 

We have also performed some computations with the LJ potential and we give some 
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Table 1. Fluid argon with  twc-plus threebody potential (see text): value at q = 0 
of F(q) and of S(q). of the coefficient & (equation (IS)), of the position qmjn of the 
first r 3 ~ l ~ l l l U R l  Of s(q). of S(qmin) frolll the triplet MHNC equation. In the last tWO 
rows these quantities are given wheu the LennKd-Jmes potential is used with the 
parrunetus o = 0.3405 mu anid < / h ~  = 119.8 K. LI the last column the cxpsrimeutd 
value of S(0) deduced from a fitted equation of state [20] is given. 

180 
180 
180 
180 
140 
140 
140 
85 

85 
85 

1.90 
6.00 
11.32 
21.30 
1.90 
15.09 
21.30 
2130 

21.30 
20.91 

0.173 -0.0165 
0.111 -0.0153 
0.0047 -0.0132 

-0.7973 -0.0027 
0.300 -0.0237 

-0.0742 -0.0156 
-0.8556 -0.0049 
-0.8881 -0.0140 

-1.0146 -0.0278 
-0.8973 -0.0288 

I .49 
3.00 
1.06 
0.0556 
2.33 
0.47 
0.0520 
0.0502 

0.0442 
0.0506 

8.72 
8.29 
7.47 
1.37 
9.13 
7.06 
2.16 
4.76 

4.85 
5.08 

0.839 
0.580 
0.344 
0.0555 
0.809 
0.202 
0.0517 
0.0465 

0.0390 
0.0432 

1.48 
2.80 
1.11 
0.0529 
2.22 
0.54 
0.0504 
0.0487 

0.0487 
0.0560 

~~~~~~ 

results for two states close to the triple point in table 1. The isothermal compressibility 
is smaller than experiment when the standard values for U and c are used and the 
amplitude of the cubic term Z3 is more than double the value given by the accurate 
pair potential plus the AT interaction. In fact we have E3 = 0.00723 nm6 for the LJ 
potential at  T = 85 K (7'' = 0.7095) whereas from (22) we get E3 = 0.00340 nm6. 
Therefore the LJ potential cannot be used to give a reliable estimate of the low-q 
behaviour of S(q). 

We can also make a comparison with the result of Evans and Sluckin [4] and 
the state T = 85 K ,  p = 20.91 1x11~~ corresponds exactly with one of their states 
computed within a perturbative approach wit11 the random phase approximation for 
attractive forces. Their compressibility is substantially smaller than ours, S(0) = 
0.0367 against our S(0) = 0.0506, and this difference is i n  qualitative agreement 
with previous comparisons [6] of MHNC with perturbative theory. On the basis of 
previous comparisons 17, 81 with simulation results we believe that the present result 
is more accurate. The coefficient Z3 is the same in the two approaches and is exact, Z2 
is roughly the same. The 02 minimum of S(q )  obtained by Evans and Sluckin [4] is 
much shallower than what we find, they get S(qmjn)/S(O) = 0.95 with qmi, = 2.5 nm-' 
whereas we have S(qmin)/S(0) = 0.85 with qmin = 4.3 nm-'. This indicates that  the 
coefficients of the q4 and possibly the higher order terms of the power expansion of 
S(q) are different in the two approximations. Unfortunately we cannot use simulations 
results as a test of which theory is more accurate in this respect because this would 
require a simulation with a much larger number of particles than has been c.urrently 
used. 

From the best representation [ Z l ,  15, 221 of the interatomic. interac.tion for the 
other rare gases and from (17) we obtain the following expressions for the coefficient 
E. of the cubic term: 

Ne : 

Kr : 

Z3 = [0.03927- 0.00009 p]/T (nm6) 

E3 = [0.74650 - 0.01100 p]/T (nn16) 
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Xe : F3 = [1.64681- 0.03968 p ] /T  (nm6). (25) 

Neon has non-negligible quantum corrections but we conjecture that there is no quan- 
tum correction in F3. This is not true for S, because its value depends on S(0). 

We have only performed detailed computations of S(q) and E(p) for argon so that 
we cannot give a precise estimate of the extension of the linearity of X(p) and p ( q )  for 
other rare gases . In fact the accurate pair interactions for the different rare gases do 
not scale one with the other and the law of corresponding states is not satisfied exactly 
even a t  the level of the two-body interaction. However the deviations are not very 
large and we can expect that the value of q& obtained for argon is indicative of its 
value for the other rare gases if we consider analogous thermodynamic states in terms 
of the respective critical or triple points. This is borne out by the few computations 
we have performed. For instance for Xe at T = 346 K and p = 3.8 nm-3, which 
corresponds to argon at T = 180 K and p = 6 in terms of the critical point 
constants, we obtain q;, = 2.7 nm-' which should be compared with yj, = 1.8 nm-' 
for Ar. 

4. Retardation effects 

The long-range behaviour of the dispersion forces between polarizable entities is af- 
fected by the finite velocity of propagation of the electromagnetic field [23]. In the 
case of non-polar molecules like the rare gases the interaction energy a t  large distance 
changes from v6 to Y7 and this reduction is due to the fact that this energy does not 
depend on the istantaneous values of the fluctuating dipole moments of the two atoms 
but on their values at two different times related to  the time interval of propagation 
of the electromagnetic field from one atom to the other. 

The retardated dispersion forces can be written in the form 

B 
p(r) = - -G(P)  r6 

with G(r) -+ 1 as r - 0 and G(r) - 1/r as r -+ 03. If the fluctuation of the 
istantaneous dipole moment is dominated by a unique electronic transition the energy 
of which we call hu,, the retardation factor G(r) for short distances 1241 is 

1 
3 G ( r ) = l - - ( q o r ) * + ~ ~ ~  (qor<  1) 

and for large distances [23] 

as r-  m 
23 1 
3n pop 

G(r) - -- 
where q, is the wavevector corresponding to yo: 

2?r 
qo = - = 2nvo/c.  

A0 
' In this same approximation the strength B of the non-retarded interaction is given by 

B = Qa2huo (30) 
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where a is the atomic polarizability. G(r) has been computed [23] numerically a t  
intermediate distances and we find that a useful analytical approximant is 

(31) 
a 
I 

G(z) = -11 + ~ r * e x p - ~ ~ j - ~ t a n h ( z / a )  I = qor 

with coefficients 

1 3n2 23 
3a 3 232 

Q=--- b = 6.11 a=- 

The values of a and a are such that (31) has the expansions (27) and (28) and the 
value of b is such that C(r)  has the correct value a t  I = 0.3. 

When we take retardation into account the small-q expansions (15) and (16) of F(q) 
and S(q) are no longer correct and the algebraic 1qI3 singularity becomes a logarithmic 
one. If only two-body forces are present with the large r behaviour (26, 28) the 
expansion of F(q) reads 

(33) - 
c(q) = F ( 0 ) + F * 9 ~ + F ~ ~ ~ 9 ~ 1 1 n i y / q ~ l l + F ~ 9 ~ + . . .  

where 

- 23 B 
C41n = - - 

90 qOkBT 
(34) 

and q1 is a scale factor which cannot be determined by asymptotic analysis. S(q) has 
an expansion similar to (33) and the characteristic coefficient is .s',,, = p[S(0)]zF41n. 

Since retardation only becomes effective a t  large-distanLs we might expect that a 
quantity such as X(q) = [F(q) - F(O)]/9* or p ( q )  = [S(q) - S(0)]/g2 has an essentially 
linear behaviour in 9 in a window of q values. On one haud we have an upper limit 
already considered in the previous section beyond which the term q4 and the higher 
ones become important. In addition we have now a lower limit 9]  below which retar- 
dation becomes effective; the appropriate expansion is given by (33) and X(y) should 
display curvature. In order to determine the size of this window we have performed 
MHNC computations for argon with the pair interaction 

vdp) = G(r)io(9*) (35) 

where p(r) is the HFD-B2 interaction considered in the previous section and G(r) is the 
approximant (31). Using the B value of the HFD-B2 interaction and the polarizability 
of argon (a = 1.63 x cm3) in equation (SO), we obtain vo and therefore 90 
from (29) with the result that  hv, = 19.3 eV, qa = 0.098 uni-', A, = G4 nm. The 
G(r) factor in (35) modifies the interaction ioR only at  large distanc.e where y ( r )  has 
already reached the asymptotic r-6 behaviour so that (35) is a fair representation of 
the interatomic interaction a t  all distances. 

In figure 5 the effect of retardation on X ( q )  is shown for the state T = 140 K 
and p = 1.9 nm-3. In this case the upper limit of linearky of X ( 9 )  is rather large, 
q& = 4.5 nm-I, when no retardation is included and as expected there is a window 
of q values where A ( q )  is essentially linear in q when retardation is taken into account. 
However the presence of curvature in X ( q )  is evident at  the smaller q and if we allow 
for a 3% deviation from linearity we find that the lower limit is q 0.5 nm-' for this 
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9 [nul41 

Figure 5. X ( q )  = E(p) - Z(O)]/q* as fuuctimi of p iu in figure 2. Here the broken 
Line represents the result for the retarded HFD-B2 potential, equation (35), atd tlic 
full Line for the luurtarded one. 

thermodynamic state. At higher density where q& drops below 1 nm-l the window 
of linearity becomes small or disappears altogether. This last case always applies to 
S(q) because q has to be so small in order to see linearity in 149) in  the unretarded 
case that the 1qI3 behaviour is completely washed out by retardation effects. 

Therefore our prediction is that it will only be possible to detect the unretarded 
1qI3 term under the favourable conditions mentioned in the previous section-an in- 
termediate value of density and analysis of the scattering data in terms of ;T(q). In 
other cases the retardation effect washes out the 1qI3 term leaving a weaker singularity 
q4 In IqI.  Retardation effects should become observable  for^ qz0.S nm-'. 

In the case of heavier rare gases, for instance xenon, the detection of the 1413 term 
should be slightly easier. On one hand the upper limit q& is somewhat larger than in 
argon. On the other the characteristic energy hu,, is smaller so that also qo is smaller 
by 20-30% in the case of Xe, and the window of linearity of X(q) is larger. 

We have considered the effect of retardation on the pair forces only. In a similar 
manner the large distance behaviour of the three-body AT interaction is affected by 
retardation and the 1qI3 contribution to Z(q) and S(q) will disappear at  sufficiently 
small q.  Bowever we are not aware of any study of how 4231. is modified at large 
distance by retardation. 

In general retardation has only a very small effect on the tlierinodynamie properties 
of the system but at the highest density the effect is not completely negligible. For 
instance a t  p = 21.3 nm-3 and T = 140 K,  S(0) of argon (two-body forces only) 
changes from 0.0581 to 0.0562 when retardation is present. This is about one-third 
of the effect of the AT interaction. However the absolute accuracy of the MHNC is not 
sufficient to make a comparison with experiment. 

5. Conclusions 

We have revisited the question of the non-analytic cubic term in the small-q expansion 
of S(q) of rare gases. On the basis of an accurate integral equation for g[r) and of 
the best model of the interatomic interaction, included the three-body AT interaction, 
we find that measurement of S(q) in the range 1-4 nm-I under the most favourable 
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conditions should be able to detect this 1qI3 term. Favourable conditions are an inter- 
mediate range of density and an analysis of the scattering data in term of F ( q )  and not 
S(q). In the region of the triple point the q range needs to be smaller by a factor of 
five. Existing experimental data for S(q)  do not extend to small enough q ,  for instance 
the measurement of IS] starts a t  2.4 nm-', and do not allow a clear detection of the 
1qI3 term. The added range down to 1 or better 0.5 nm-' is essential for this purpose. 

We have also considered the effect of retardation of dispersion forces on the cor- 
relations in the system. The 1qI3 behaviour is modified in q4 In Iq( and retardation 
should affect S(q) and F(q) for q20.5 nm-'. Therefore detection of retardation effect 
in the interatomic interaction of rare gases appears to be a feasible experiment. On 
the other hand this same effect puts limits to the observability of the )qI3 term to the 
favourable situations mentioned earlier and to the accuracy with which its coefficient 
can be determined. 

The experimental determination of the coefficient F. of the cubic term of F(q) 
is of fundamental importance because of the direct and simple relationship between 
F3 and the large distance behaviour of the interatomic interaction. For a pure two- 
body interaction F3 is rigorously density independent whereas the presence of the AT 
interaction leads to a linear p dependence. Probably the detection of this density 
dependence of Z3 represents the most unequivocable way of obtaining evidence for the 
presence of three-body forces in condensed matter, at least in their long-range aspect. 
Moreover deviation of F3 from linearity in p would be evidence for four-body long 
range interaction. We also point out that the very simple T and p dependence of F3 
as given by (17) allows for a stringent test of the consistency of an experimentally 
determined F3. In fact hy performing the experiment along two different isotherms 
the ratio of Z3 a t  the two temperatures but a t  the same density sliould be equal to the 
inverse ratio of the temperatures and this ratio must be independent of density even 
if many-body forces beyond the three-body ones should be present. 
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