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Abstract. The structure factor $(g) and the direct correlation function &(§) of
rare gases are expected to have a non-analytic |g|? term at small g. This term is
due, in addition to the well known long-range % taijl of the two-body interaction,
also to the three-body Axilrod-Teller (AT) interaction. The coefficient &3 of the |g|3
term of (q) has a particularly simple state dependence, T—! in temperature and
linear in density, when the AT interaction is present. If no three-body interaction
is present &3 is density independent. Therefore the experimental determination of
the density dependence of €3 will give unequivocable evidence of three-body forces.
On the basis of the integral equation method we determine that it will be easier
to detect the [g[> term if the scattering data are analysed in term of &(gq) and for
measurements at density and temperature not far from the critical point. Under
these favourable conditions scattering measurements in the range 1-4 nm~! will give
a precise determinatjon of the |¢]* term. The role of retardation, which changes the
r~% tail into =7, on the small-¢ behaviour of S(q) and &(g) is also evaluated and
this effect is predicted to be measurable for ¢<0.5 nm~1.

1. Introduction

The static structure factor S(q) of a fluid is a quantity of fundamental interest because
it gives information on the spontaneous density fluctuations and on the local order
which is present in the system. In addition in the case of a monoatomic fluid S(gq)
in principle uniquely determines the interatomic interaction o(r) if this interaction
is pairwise additive (for a review see [1]). If many-body forces are also present then
S(q) determines an effective pair interaction. If this scheme to deduce ¢(r) from
S(q) is simple, in principle, it is well known that the inversion of $(g) is, in practice,
very demanding both experimentally and theoretically because of the high sensitivity
[2] of the extracted interaction to the accuracy and g-range of the data and to the
approximations of the theory which are used in the inversion of S(q).

In the case of rare gases there is one feature of (r) which, in principle, can be
extracted from S(g) without any ambiguity—its long-range r~° tail. As a result of this
long-range tail due to dispersion forces, S(g) is non-analytic at ¢ = 0 and its small-¢
expansion displays a |g|3 term with a coefficient simply related to the amplitude of
the »~¢ tail [3]. Here the only problem is how small ¢ has to be in order for the |q|3
term to be unravelled from the other terms. We are not aware that any measurement
of S(q) has detected this |q|® term yet.
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A number of articles [4-6] have been specifically devoted to the question of the
small-g behaviour of S{g) after the pioneering work by Enderby et a! {3] and we address
this problem again for several reasons. First we have now available from the theory
of fluids, schemes based on the integral equation for the radial distribution function
g(r) which are very accurate {7, 8] over most of the phase diagram and describe
both the short- and long-range behaviour of g(r) starting from realistic models of the
interatomic interaction. Previous studies {4, 5] were based on schemes which were
only accurate in the very dense regime, which were specific to small-¢ or have been
limited (6] to the Lennard-Jones potential (LJ). On the basis of previous studies one
cannot completely answer the questions we have in mind: in which ¢ should range
experimentalists expect to find the |¢|* term and which region of the phase diagram
is most favourable for its detection. The second reason is that we find that the triple
dipole Axilrod-Teller (AT) interaction also contributes to the }g|? term. Fortunately
we have already extended [7] the integral equation we use, a modified hypernetted
chain (MHNC) equation {9], to the case when a three-body interaction is present so
that we can analyse this question. Finally the r—¢ tail of the interatomic interaction
does not extend to arbitrarily large distances and retardation due to the finite velocity
of light modifies the asymptotic behaviour of ¢(r) giving a r~7 tail. Therefore the |q®
term does not extend to arbitrary smali-g but this question has not been examined in
the literature. Here we also study how retardation modifies the small-g behaviour of
S(q) and 7(g) and the thermodynamic properties.

The contents of the article are as follows. In section 2 we discuss the integral equa-
tion we are using in the case of pair forces and pair plus triplet forces. In section 3 we
constder the small-g behaviour of S{g) and of the Ornstein-Zernike direct correlation
function (g} given by our equation. Then we present the result of a numerical solu-
tion to the equation for an interatomic interaction appropriate to argon; we display
the g region where the |g)® term should be detectable both for $(¢) and &(g) and we
discuss the range of density and temperature more favourable for the detection of the
lg|* term. In section 4 we discuss the effects of retardation on the properties of the
fluid. A discussion of our results is given in section 5.

2. The integral equation scheme

We assume that the interatomic interaction consists of a central pair potential plus a
three-body potential,

Ulry, . .ory) = 3 elrg) + Z B ry v my), r; = fr; =7l (1)
i<F i<j<k
and that quantum effects can be neglected. The first equation we use is the modified

hypernetted chain {MHNC) equation extended to include three-body forces [7]. This
reads

g(r) = exp[=Bp(r) + 8(r} + C(r} + Eyg(ri )] 2
8(r) = g(r) — 1 —c(r) = h(r) — c(r) (3)

where the direct correlation function ¢(r) is related to g(r) = 1 4-2(r) by the Ornstein-
Zernike (0Z) relation

hr) =c(m) + pf &rle(+Yh(lr — v’|) 4
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and C(r) is the dressed three-particle vertex

C(riz) = P_/dsrs g(r13)g(r23){ei1)[—,6¢(3)(r1,1-2,1'3)} -1} (5)

If in (2) Eyg were the exact bridge function of the system including diagrams with
three-body plaquettes, equation (2) would be exact. The approximation resides in
replacing this unknown bridge function with that of hard spheres of diameter d in
which the optimal choice of d is determined by the equation

1@ = [ @rlotr) - gystr ) 281D o, ©

If only two-body forces are present one has simply to drop the term C(r) in equa-
tion {2).

We also consider a related equation [10], a cross-over hypernetted chain equation
(CRS-MHNC), which differs from equation (2} in the substitution of the hard sphere
bridge function Eyg for the cross-over form

Ecps(r) = {1 = I{r)} Byg(r; d) + {(r){1 — g{r) + lug(r)). (7)

The term in square braket represents the functional form corresponding to the mean
spherical approximation (MsA), i.e. it is such that ¢{r) = —Bp(r) where {(r}) = 1. The
cross-over function {(r) vanishes in the core region and is unity at large distances so
that Exps(r) has the hard sphere form at short distance and the MSA form at large
distance. We refer the reader to [7] for the form of {(r) and for the criterion which
determines the cross-over parameters.

The accuracy of the MHNC and CRS-MHNC equation is well documented by a nium-
ber of comparisons with simulation results for different forms of the pair interaction
@fr} and in various regions of the phase diagram. The effects of the three-body AT
interaction is also accurately represented [8, 11]. The results of the two equations
are very similar, if we exclude the immediate neighbourhood of the critical point, the
CRS-MHNC being slightly superior.

We consider now the long-range behaviour of ¢(r) and A(») and the sinall-¢ be-
haviour of the related functions '

#g) = /dsrei""c(r) (8)

S(@) =1+ [ Erevrigr) - 1 ©)
when the pair interaction has the tail
lry ~ —B/r® as v — 00, (10)

If S(0) = pkgTK is finite, i.e. the system is not at the critical point, a general result
by Groeneveld and Stell [12] states that e(r) ~ —fp(r] asymptotically as r — co.
This behaviour is also given by the MHNC equation as can be shown by taking the
logarithm of equation (2) and expanding Ing = In(1+ 4) = h — $A% + - -. When no
three-body forces are present we get

e(r) ~ =Bip(r) + Ah*(r) + Bys(r) +-++ asr— o0 (11)
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with 4, = % Eyg(r) decays to zero at large distance more rapidly than a power law
and from the OZ relationship it follows that h(r) and c(r} decay to zero with the same
power law, Thus the result ¢(r) ~ —fBp(r) follows. In the case of the CRS-MHNC we
have the stronger result ¢(r) = —Bw(r} in the range where I(r) = 1. We conclude
that for both equations the dominant long-range behaviour of ¢(r) is correct. The
subdominant term is not correct, having A, = 1 for MHNC and A, = 0 for CRS-MHNC,
whereas the exact A, is a state-dependent coefficient related to the thermodynamic
properties [12].

The situation is slightly different when a three-body interaction is present because
the dressed three-particle vertex C(r) has a long-range tail when ¢(®) has the AT form:

(12)

where @, are the angles of the triangle with vertices at »;, ¢ = 1, 2, 3. Casanova et
al [13] discussed the three-particle vertex {5) in the limit of low density where g(r)
becomes equal to the Boltzmann factor exp{—Bp(r)]. They considered three different
pair potentials (hard sphere, square well and Lennard-Jones) for which they obtained
the same asymptotic behaviour

I+ 3 cosd cosb, cosfy
"3 .3
riar3sr s

3
‘35(.‘1'1)'("1”'21"3} =v

O~ ~FBwsy  asr—oo (13)

and argued that such a result is valid in general for any two-body potential. We would
expect that this conclusion would also be valid at arbitrary density if the asymptotic
contribution to C'(r = |r, — r |} derives from a region of integration over rg in equa-
tion (5) where 7, is far from r, and r, so that the g in the integrand can be approx-
imated by unity, We have proved this statement analytically and result (13) under
the only condition that i(r) vanishes at least as fast as 7=® witha > 0 as r — o0,
Therefore result (13) also holds true at the critical point. We arrived at this result by
extending the integration in equation (5) over 7, and introducing the delta function
8(rya — r;5 + 7o) as a factor in the integrand. At this point the integrals can be
written in Fourier space so that one can apply Fourier asymptotic [14] analysis and
after some manipulations we arrive at (13). It is clear from (2) that —C(r)/8 has the
role of an effective two-body interaction which has to be added to ¢{») so that

o(r) ~ —Bp(r) + C(r) = B(B — (8/3)pv)[r®  ast — oo (14)

From the diagrammatic representation of the bridge function it is found that the
diagrams with three-body plaquettes decay to zero faster than ('(») so that (14) has
general validity and is not limited to the MHNC equation we are using,.

By using asymptotic Fourier analysis [14] it is a simple matter [3] to obtain from
(14} the small-¢ expansion of ¢(¢) and 5(g) with the result

Hg) = Q) + 59" + Glal> + Gya® + - {15)
R N 2 o3 1
S(0) = Ty = SO+ Sy 4 Slaf*+ Sy 4+ (16)
The |¢|® terms are due to the »~° tail in direct space and the coefficients read
. 7 8r
CS_H(B_TPU) /kBT {17}

Sy = plS(O)]%%;. (18)
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¢, has a very simple state dependence, it is inversely proportional to temperature
and is a linear function of density due to the AT interaction. For a pure two-body
interaction 73 is density independent. Contributions to the three-body interaction of
higher order of the triple dipole one do not contribute to € so that the result (17)
is exact for fluids of apolar molecules. Quadruple dipolar interaction gives rise to a
four body interaction which contributes to %3 with a term proportional to p? but this
contribution should remain small even at the highest densities. The state dependence
of the coeflicient S; is much more complex due to the presence of the square of the
adimensional isothermal compressibility $(0) as shown in (18).

The ¢-range most appropriate for detection of the |¢[® terms depends on the value
of the coefficients of the higher order terms for which no analytic expression is known.
We have determined this g-range from the numerical solution of the integral equations
as discussed in the next section.

3. Small-g behaviour of $(¢) and the |¢* term for argon and for other rare
gases

We start with the study of argon. For the pair inferaction we take the HFD-B2 form of
Aziz el al [15] and as the amplitude of the AT interaction the value v = 73.39 x 10~34
erg cm~? [16]. We solve the MHNC and the CRS-MHNC equation with a standard
iterative method and we take a very large cui-off in r space in order to reproduce the
long-range tail and the |g[® terms. We use a step size Ar = 0.025 with 2!* points so
that R_.,. = 410 in units of the position r, of the minimum of ¢(r), r,, = 0.37565 nm
for the HFD-B2 potential, With the AT interaction ¢(®) it is appropriate to expand the
Boltzmann factor in €, equation (5), to linear order in 8¢®) and we rewrite it in the
form

Clr) = —ﬁ-Pf ds"s [9(r12)9(r2g) — E(ri5 ~ 1} E(res — ’“c)]ﬁﬁta)("'a,"z:“"a)

- ;BP/ &3 [E(rys = ro) E(ras — T'C)}¢(3}(r1s7'2= 73) (19)

where E(z) is the step function, E(z) = 1 for 2 < 0, E(z)} = 0 for » > 0. The second
integral can be computed analytically and the first is computed numerically with a
cut-off on the integration on r; such that ry5, 74y < r, with r, = 5 ;. This amounts
to neglecting the small difference of g{r) from unity when r > r_ and the value of r_
is such that this approximation has a completely negligible effect on C(r).

In order to extract the coefficients ; and S5 from the numerical result we construct
the quantities

c(q) — (0 -~ ~

Mo=20280 L g gras e mame (D)
S{g) - 5(0 . o

!‘(?)=—(Q}'§"Q ~ S, +S3lal+ Syt + as g — oo (21

so that from the slope at the origin we get ; and 5; and the intercept at ¢ = 0
gives, respectively, ¢, and 5,. In figure 1 we have shown ¢ as function of density for
the T = 180 K isotherm with and without ¢(®) together with the analytical result,
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The numerical result agrees with the exact result to better than 1% and this is quite
adequate for our purpose. For the HFD-B2 potential for argon plus the AT interaction
the coefficient 3 has the value

&, = [0.3667 — 0.003663 p]/T (nm®) (22)

where p is in nm™2 and T in Kelvin so that with respect to low density the value of
¢, is reduced by about 20% at the density of the triple point due to the three-body
AT interaction. The Barker et al {17] pair potential gives essentially the same value of
G, 1.6 T3{p = 0) = 0.3673/T (nm®), and the HFD-C [18] pair potential gives a slightly
smaller value Z,(p = 0) = 0.3627/T (am®).

LN BNt B ) T 1 | i T 1 T l_i L B L I T LI ]
L .
lgo @ oo o "
0.0020 [— =
= I ]
» L
£ 0.0018 L— ]
T4 r 1
0.0018 }— X -
L 1 l_.l_] i_l_!r_‘u_J;l 1y ! P |_x_] 1ol
0 5 10 i5 20 .
p [om™)

Figure 1. Coefficient T3 of the cubic termn of Z(g) as function of density from the
MHNC equation for argon at T = 180 K for the HFD-B2 potential with (x) and
without {0) the AT three-body interaction. Full lines represent the analytical result
(22) with and without the AT iuteraction.

As an example of the overall behaviour of A(g) in figure 2 we show A{g) as function
of g at T = 140 K and at p = 1.9 nm~2 computed with the MHNC equation with and
without ¢, It is clear from the figure that over an extended range of ¢ of order of
4nm~? A(g) is an essentially linear function of g so that it should be possible to extract
¢y from the experimental 5{g), converted to ©(q), if this is measured in the range of
order 1-4 nm~!. This is quite an accessible range with available instrumentation.
It is interesting to contrast this behaviour of A(g) with the one corresponding to a
short-range potential. To this end we have used an empirical pair interaction ¢, (r)
which has been extracted from the measured 5(g) at low density by Fredrikze el al
[19]. @em(r) has an attractive well similar to that of the HFD-B2? form but beyond a
distance of order of 10 A ¢, (r) has weak oscillations around zero and not a r~ tail.
This is probably due to some cut-off problem with the experimental data but it gives
us a pair interaction of finite range. In fact we truncate @, () and displace it to zero
at the position of the first maximum which is at r = 10 A. The resulting A{g) is also
shown in figure 2 and the completely different behaviour is clear at small-g.

The g-range where A{q) has an essentially linear behaviour with ¢ depends on T
and p. In order to display the large quantity of information in compact form we define
95 as the value of g where the percentage deviation of A{g) from the straight line
€, + €3lq] 1s 3%. We take this to be a measure of the ¢g-range where from our theory
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Figure 2. A(g) = [Hq) ~&(0)]/9? as functionof g for argon at T = 140K and p = 1.9
nm™~? for the HFD-B2 potential with (full curve) and without (broken curve) the AT
interaction and for an empirical (see text) short range pair interaction {chain curve).

the €, term is ‘visible’ in &g} or, more precisely, in A(¢}. ¢5s, is shown in figure 3 as
function of density for the two isotherms T" = 180 and 140 K when the MHNC equation
is used with and without ¢(®). The results from the CRS-MHNC equation, which we
do not show, are similar and in general it turns out that g3y, is larger by 10-20% than
the MHNC result.

o o i
T I = 18
5 sl a T =180 K ]
& a ¥ X a
H B X .
°G‘ ik "
]
o { ) L
o = T S —
g -
T [ ]
g aF © T = 140 K .
A, X
5 L
G 2fa =
L X ]
Py 1 | i L 8, 1
0 3 10 15 20
e [am™]

Figure 3. Range g5, of linearity of A(g} for the isotherms T = 180 and 140 K of
argon for the HFD-82 potential with (%} and without (0} the AT interaction.

The general comment we can make is that g5y, is larger for an intermediate value of
the density, roughly in the region of the critical density if T > T or on the coexistence
line if T < T, and it becomes small, typically below 1 nm™~}, at the density of the
triple point. g5, becomes larger for decreasing temperature but at the same time
the liquid-vapour coexistence region becomes wider and the detection of €3 is more
difficult, For instance at the triple point g5y = 0.4 nm~!. The presence of the three-
body interaction slightly modifies the shape of A(g) but in general does not alter the
region of linearity very much. A large effect on g3 is present if the system is close to
the critical point or to the spinodal line where S(0) becomes larger than unity. For
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instance at T = 180 K and p = 6 nm~3 (T/T, = 1.19,p/p, = 0.74} ¢, drops from
3.0 to 1.8 nm—* when ¢(® is introduced. We believe that this is an indirect effect due
to the displacement of the critical temperature. In fact the critical temperature T,
changes [11] by about 10% due to the presence of ¢(3) and T}, is substantially 1arger
than experiment if only the two-body interaction is con51dered On the other hand
empirically we find that there is a relationship between the value of ¢, and that of
5(0)—a large value of 5(0) is connected to a large value of g5,

Different behaviour is found with S(g) or, more precisely, with z(g) given in equa-
tion (21). If we define q_:;"% for u(g) in a similar way to g5, we find that qg% never
exceeds 1 nm~? aud it is smaller at intermediate densities. If g3y, for p(q) is slightly
larger than g5, for A(g) at the density of the triple point, at intermediate density
it is an order of magnitude smaller (see figure 4). We can understand this different
behaviour as follows. If the relevant g is so small that we can neglect the higher
order terms not written in (20) and (21) we easily obtain ¢§,; = 0.03 &3/[c,] and
93% = 0.03 &3 /|2, + pS(0)ZZ|. Hence a large value of S(0) leads to a small value of qa?
since €, is a smooth function of T and p (see table 1). Only at the lowest temperature
in the liquid phase, i.e. at the triple point, is qg% substantially larger than gge, but its
value, q_:f% = 0.8 nm™1, is still small so it will not be easy to detect.

0_5‘,. — | LA LA [..‘
04 B 8
= F T= 180 K %
! 0.3 [~ -
g [ %
" 02 - ® a a
mn
S I B g B & .
PRSI RN TR | | PN |
0.0 [————— = | I B
8 -
08 1
n L
'7; 04 - T=140K % 7]
- [a] ]
0.2 - =
B | =
“er [ B x B
(Y S——— L — 1
4] 5 10 15 20
# fam™}

Figure 4. Range qf% of linearity of p{g). Symbols have same meaning as in figure 3.

For all the thermodynamic states we have considered the structure factor has an
0z behaviour at small-g,1.e. 5(¢) has a downward curvature around ¢ = 0 so that S(q)
has a minimum at a finite ¢. This minimum is very prominent at intermediate densities
and very weak at the highest densities. The position and value at this minimum are
given in the table at selected densities at a temperature above T, at one below and
at the triple point. We also give the value of 5(0), €(0) and .. 'Ihe value of S, (see
equation (16)) can be casily obtained from the relationship S, = p[5(0)]?%,. There
is a substantial agreement of the computed S(0) with the experimental value (last
column) deduced from the isothermal compressibility, the typical deviation being of
the order of 5%. The percentage deviation becomes somewhat [arger for states in the
neighbourhood of the critical point as might be expected close to states where S(0) is
diverging.

We have also performed some computations with the LJ potential and we give some
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Table 1. Fluid argon with two-plus three-body potential (see text): valucat g = ¢
of ¢(g} and of S{g), of the coefficient &; (equaticn (15)), of the position gmin of the
first minimum of S(g)}, of S{qmin) from the triplet MENC equation. In the last twa
rows these quantities are given when the Lennard-Jones potential is used with the
parameters o = 0.3405 mn and ¢/kp = 119.8 K. In the last column the experimental
value of 5(0) deduced from a fitted equation of state [20] is given.

T £ €0} [ 5(0) Irnin 5(qmin) 5(0)exp
(K) {(um=2%)  (om®) (am®) (nm—t}

180 1.80 0.173 —0.0165 1.49 8.72 0.839 1.48
180 6.00 0111 -0.0153 3.00 8.29 0.580 2,80
180 11.32 0.0047 -0.0132 1.06 747 0.344 1.11
180 21.30 —0.7973 -0.0027 0.0556 1.37 0.0555 0.0529
140 1.80 0.300 00237 2.32 9.13 0.809 2,22
140 15.09 —-0.0742 -0.0156 0.47 7.08 0.202 0.54
140 21.30 —-0.8556 -0.0049 0.0520 2.16 0.0517 0.0504
85 21.30 -0.8881 =0.0140 0.0502 4.76 0.0465 0.0487
85 21.30 —-1.0146 -0.0278 0.0442 4.85 0.0390 0.0487
85 20,91 -0.8973 -0.0288 0.0508 5.08 0.0432 0.0560

results for two states close to the triple point in table 1. The isothermal compressibility
is smaller than experiment when the standard values for ¢ and ¢ are used and the
amplitude of the cubic term €; is more than double the value given by the accurate
pair potential plus the AT interaction. In fact we have ; = 0.00723 nm® for the LJ
potential at T = 85 K (7™ = 0.7095) whereas from (22) we get &5 = 0.00340 nm®.
Therefore the LJ potential cannot be used to give a reliable estimate of the low-g
behaviour of S(g).

We can also make a comparison with the result of Evans and Siuckin [4] and
the state T = 85 K, p = 20.91 nm~2 corresponds exactly with one of their states
computed within a perturbative approach with the random phase approximation for
attractive forces, Their compressibility is substantially smaller than ours, S(0) =
0.0367 against our S{0) = 0.0506, and this difference is in qualitative agreement
with previous comparisons [6] of MHNC with perturbative theory. On the basis of
previous comparisons |7, 8] with simulation results we believe that the present result
is more accurate. The coeflicient ¢; is the same in the two approaches and is exact, &,
is roughly the same. The 0Z minimum of ${g) obtained by Evans and Sluckin [4] is
much shallower than what we find, they get S(q,,;,,)/S(0) = 0.95 with ¢,,,;;, = 2.5 nm™!
whereas we have S(g,,)/5(0) = 0.85 with g,,,, = 4.3 nm~!. This indicates that the
coefficients of the ¢* and possibly the higher order terms of the power expansion of
S(q) are different in the two approximations. Unfortunately we cannot use simulations
results as a test of which theory is more accurate in this respect because this would
require a simulation with a much larger number of particles than has been currently
used.

From the best representation [21, 15, 22] of the interatomic interaction for the
other rare gases and from (17) we obtain the following expressions for the coefficient
¢5 of the cubic term:

Ne: & =[0.03927 — 0.00009 p)/T (nm®) (23)

Kr : & = [0.74650 — 0.01100 )/T (nm®) (24)
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Xe : &, = [1.64681 — 0.03968 p)/T (nm®). (25)

Neon has non-negligible quantum corrections but we conjecture that there is no quan-
tum correction in €. This is not true for S; because its value depends on S(0).

We have only performed detailed computations of S{g) and ¢{q) for argon so that
we cannot give a precise estimate of the extension of the linearity of A(g) and u(g) for
other rare gases . In fact the accurate pair interactions for the different rare gases do
not scale one with the other and the law of corresponding states is not satisfied exactly
even at the level of the two-body interaction. However the deviations are not very
large and we can expect that the value of g5y, obtained for argon is indicative of its
value for the other rare gases if we consider analogous thermodynamic states in terms
of the respective critical or triple points. This is borne out by the few computations
we have performed. For instance for Xe at T = 346 K and p = 3.8 nm™~3, which
corresponds to argon at T = 180 K and p = 6 nm™? in terms of the critical point
constants, we abtain g5, = 2.7 nm™~! which should be compared with g5, = 1.8 nm~!
for Ar.

4. Retardation effects

The long-range behaviour of the dispersion forces between polarizable entities is af-
fected by the finite velocity of propagation of the electromagnetic field {23]. In the
case of non-polar molecules like the rare gases the interaction energy at large distance
changes from r—% to r~7 and this reduction is due to the fact that this energy does not
depend on the istantaneous values of the fluctuating dipole moments of the two atoms
but on their values at two different times related to the time interval of propagation
of the electromagnetic field from one atom to the other,
The retardated dispersion forces can be written in the form

olr) = ~ 2 () (26)

with G(r) —»-1 as r — 0 and G(r) ~ 1/r as r — oo. If the fluctuation of the
istantaneous dipole moment is dominated by a unique electronic transition the energy
of which we call hy,, the retardation factor G(r) for short distances [24] is

1
Gry=1-3lgr)’+ - (<) (27)
and for large distances [23]
23 1 .

where g4 is the wavevector corresponding to vy

27
G=7"= 2wvg/c. (29)
0

In this same approximation the strength B of the non-retarded interaction is given by

B = 2a’hy, (30)
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where « is the atomic polarizability. G(r) has been computed [23] numerically at
intermediate distances and we find that a useful analytical approximant is

G(z) = %[1 + az?exp~**]" tanh(z /o) z = ggr (31)
with coefficients
3T p=611 (32)

The values of & and a are such that (31) has the expansions (27) and (28) and the
value of b is such that G(r) has the correct value at z = 0.3.

When we take retardation into account the small-q expansions (15) and (16} of &(q)
and S(g) are no longer correct and the algebraic |¢|® singularity becomes a logarithmic
one. If only two-body forces are present with the large r behaviour (26, 28) the
expansion of ¢{g) reads

g) = E0) + E,0° + Cypq*tInfg/a ]l + Sug* + - (33)
where
~ 23 B
(34)

and ¢, is a scale factor which cannot be determined by asymptotic analysis. S{g) has
an expansion similar to (33) and the characteristic coefficient is 5y, = p[S(0)]*Cyn.

Since retardation only becomes effective at large distances we might expect that a
quantity such as A(g) = [¢(g) — &0))/¢® or u(g) = [S(g) — S(0}]/¢? has an essentially
linear behaviour in g in a window of g values. On one hand we have an upper limit
already considered in the previous section beyond which the term g¢* and the higher
ones become important. In addition we have now a lower limit ¢, below which retar-
dation becomes effective; the appropriate expansion is given by {33) and A{g) should
display curvature. In order to determine the size of this window we have performed
MHNC computations for argon with the pair interaction

er(r) = G(r)e(r) (35)

where (r) is the HFD-B2 interaction considered in the previous section and G(r) is the
approximant (31). Using the B value of the HFD-B2 interaciion and the polarizability
of argon (o = 1.63 x 10-2% cm?) in equation (30), we obtain v, and therefore ¢,
from (29) with the result that hryy, = 19.3 eV, g, = 0.098 nm~!, Ay = 64 nm. The
G(r) factor in (35) modifies the interaction ¢ only at large distance where (r) has
already reached the asymptotic r~¢ behaviour so that (35) is a fair representation of
the interatomic interaction at all distances.

In figure 5 the effect of retardation on A(g} is shown for the state T = 140 K
and p = 1.9 nm~3, In this case the upper limit of linearity of A(q) is rather large,
Gz, = 4.5 nm™!, when no retardation is included and as expected there is a window
of g values where A(q) is essentially linear in ¢ when retardation is taken into account.
However the presence of curvature in A(g) is evident at the smaller ¢ and if we allow
for a 3% deviation from linearity we find that the lower limit is ¢ =~ 0.5 nm™?! for this
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Figure 5. (g} = [€{g) — S(0))/g* as function of ¢ as in figure 2. Here the broken
line represents the result for the retarded HFD-B2 potential, equation {35}, and the
full line for the unretarded one.

thermodynamic state. At higher density where g3, drops below | am™} the window
of linearity becomes small or disappears altogether. This last case always applies to
S(g) because ¢ has to be so small in order to see linearity in pu{g) in the unretarded
case that the |¢[2 behaviour is completely washed out by retardation effects,

Therefore our prediction is that it will only be possible to detect the unretarded
lg|® term under the favourable conditions mentioned in the previous section—an in-
termediate value of density and analysis of the scattering data in terms of €(g). In
other cases the retardation effect washes out the |g[* term leaving a weaker singularity
¢*Inlq]. Retardation effects should become observable for ¢<0.5 nm™1,

In the case of heavier rare gases, for instance xenon, the detection of the |g|> term
should be slightly easier. On one hand the upper limit g5, is somewhat larger than in
argon. On the other the characteristic energy huj is smaller so that also g, is smaller
by 20-30% in the case of Xe, and the window of linearity of A(g) is larger.

We have considered the effect of retardation on the pair forces only. In a similar
manner the large distance behaviour of the three-body AT interaction is affected by
retardation and the |g|® contribution to ¢(q) and S(g) will disappear at sufficiently
small g. However we are not aware of any study of how q’:ff.% is modified at large
distance by retardation,

In general retardation has only a very small effect on the thermodynamic properties
of the system but at the highest density the effect is not completely negligible. For
instance at p = 21.3 nm~2 and T = 140 K, S(0) of argon (two-body forces only)
changes from (.0581 to 0.0562 when retardation is present. This is about one-third
of the effect of the AT interaction. However the absolute accuracy of the MHNC is not
sufficient to make a comparison with experiment.

5. Conclusions

We have revisited the question of the non-analytic cubic term in the small-q expansion
of S{q) of rare gases. On the basis of an accurate integral equation for g(r) and of
the best model of the interatomic interaction, included the three-body AT interaction,
we find that measurement of S(g) in the range 1-4 nm~? under the most favourable
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conditions should be able to detect this |¢|* term. Favourable conditions are an inter-
mediate range of density and an analysis of the scattering data in term of &q) and not
S(g). In the region of the triple point the g range needs to be smaller by a factor of
five. Existing experimental data for S(g) do not extend to small enough ¢, for instance
the measurement of [8] starts at 2.4 nm~!, and do not allow a clear detection of the
|¢|® term. The added range down to I or better 0.5 nm™! is essential for this purpose.

We have also considered the effect of retardation of dispersion forces on the cor-
relations in the system. The |¢]* behaviour is modified in ¢*lIn|g| and retardation
should affect S(g) and &(g) for ¢<0.5 nm~*. Therefore detection of retardation effect
in the interatomic interaction of rare gases appears to be a feasible experiment. On
the other hand this same effect puts limits to the observability of the |¢]® term to the
favourable situations mentioned earlier and to the accuracy with which its coefficient
can be determined.

The experimental determination of the coeflicient &; of the cubic term of &(q)
is of fundamental importance because of the direct and simple relationship between
¢, and the large distance behaviour of the interatomic interaction, For a pure two-
body interaction €, is rigorously density independent whereas the presence of the AT
interaction leads to a linear p dependence. Probably the detection of this density
dependence of €; represents the most unequivocable way of obtaining evidence for the
presence of three-body forces in condensed matter, at least in their long-range aspect.
Moreover deviation of ¢, from linearity in p would be evidence for four-body long
range interaction. We also point out that the very simple T" and p dependence of g,
as given by (17) allows for a stringent test of the consistency of an experimentally
determined . In fact by performing the experiment along two different isotherms
the ratio of €; at the two temperatures but at the same density should be equal to the
inverse ratio of the temperatures and this ratio must be independent of density even
if many-body forces beyond the three-body ones should be present.
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